Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Med Virol ; 94(12): 5808-5826, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2075068

ABSTRACT

Rapid detection of antibodies during infection and after vaccination is critical for the control of infectious outbreaks, understanding immune response, and evaluating vaccine efficacy. In this manuscript, we evaluate a simple ultrarapid test for SARS-CoV-2 antibodies in COVID-19 patients, which gives quantitative results (i.e., antibody concentration) in 10-12 s using a previously reported nanomaterial-based three-dimensional (3D)-printed biosensing platform. This platform consists of a micropillar array electrode fabricated via 3D printing of aerosolized gold nanoparticles and coated with nanoflakes of graphene and specific SARS-CoV-2 antigens, including spike S1, S1 receptor-binding domain (RBD) and nucleocapsid (N). The sensor works on the principle of electrochemical transduction, where the change of sensor impedance is realized by the interactions between the viral proteins attached to the sensor electrode surface and the antibodies. The three sensors were used to test samples from 17 COVID-19 patients and 3 patients without COVID-19. Unlike other serological tests, the 3D sensors quantitatively detected antibodies at a concentration as low as picomole within 10-12 s in human plasma samples. We found that the studied COVID-19 patients had higher concentrations of antibodies to spike proteins (RBD and S1) than to the N protein. These results demonstrate the enormous potential of the rapid antibody test platform for understanding patients' immunity, disease epidemiology and vaccine efficacy, and facilitating the control and prevention of infectious epidemics.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Antibodies, Viral , COVID-19/diagnosis , Gold , Humans , Printing, Three-Dimensional , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
J Med Virol ; 94(5): 2067-2078, 2022 05.
Article in English | MEDLINE | ID: covidwho-1777581

ABSTRACT

Rapid detection of antibodies to SARS-CoV-2 is critical for COVID-19 diagnostics, epidemiological research, and studies related to vaccine evaluation. It is known that the nucleocapsid (N) is the most abundant protein of SARS-CoV-2 and can serve as an excellent biomarker due to its strong immunogenicity. This paper reports a rapid and ultrasensitive 3D biosensor for quantification of COVID-19 antibodies in seconds via electrochemical transduction. This sensor consists of an array of three-dimensional micro-length-scale electrode architecture that is fabricated by aerosol jet 3D printing, which is an additive manufacturing technique. The micropillar array is coated with N proteins via an intermediate layer of nano-graphene and is integrated into a microfluidic channel to complete an electrochemical cell that uses antibody-antigen interaction to detect the antibodies to the N protein. Due to the structural innovation in the electrode geometry, the sensing is achieved in seconds, and the sensor shows an excellent limit of detection of 13 fm and an optimal detection range of 100 fm to 1 nm. Furthermore, the sensor can be regenerated at least 10 times, which reduces the cost per test. This work provides a powerful platform for rapid screening of antibodies to SARS-CoV-2 after infection or vaccination.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , Biosensing Techniques/methods , COVID-19/diagnosis , Electrodes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Adv Funct Mater ; 32(9)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1530084

ABSTRACT

Additive manufacturing, also called 3D printing, is a rapidly evolving technique that allows for the fabrication of functional materials with complex architectures, controlled microstructures, and material combinations. This capability has influenced the field of biomedical sensing devices by enabling the trends of device miniaturization, customization, and elasticity (i.e., having mechanical properties that match with the biological tissue). In this paper, the current state-of-the-art knowledge of biomedical sensors with the unique and unusual properties enabled by 3D printing is reviewed. The review encompasses clinically important areas involving the quantification of biomarkers (neurotransmitters, metabolites, and proteins), soft and implantable sensors, microfluidic biosensors, and wearable haptic sensors. In addition, the rapid sensing of pathogens and pathogen biomarkers enabled by 3D printing, an area of significant interest considering the recent worldwide pandemic caused by the novel coronavirus, is also discussed. It is also described how 3D printing enables critical sensor advantages including lower limit-of-detection, sensitivity, greater sensing range, and the ability for point-of-care diagnostics. Further, manufacturing itself benefits from 3D printing via rapid prototyping, improved resolution, and lower cost. This review provides researchers in academia and industry a comprehensive summary of the novel possibilities opened by the progress in 3D printing technology for a variety of biomedical applications.

4.
Advanced Materials ; 33(7):2170046, 2021.
Article in English | Wiley | ID: covidwho-1086253

ABSTRACT

In article number 2006647, Rahul Panat and co-workers report the development of a 10-second COVID-19 antibody test that represents the fastest detection of this pathogen biomarker. The test uses an electrochemical cell consisting of aerosol jet nanoprinted 3D micropillar electrodes coated with reduced graphene oxide and viral antigens. This generic platform could be a game-changer in controlling the spread of infectious diseases during pandemics.

5.
Adv Mater ; 33(7): e2006647, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-985908

ABSTRACT

Rapid diagnosis is critical for the treatment and prevention of diseases. An advanced nanomaterial-based biosensing platform that detects COVID-19 antibodies within seconds is reported. The biosensing platform is created by 3D nanoprinting of three-dimensional electrodes, coating the electrodes by nanoflakes of reduced-graphene-oxide (rGO), and immobilizing specific viral antigens on the rGO nanoflakes. The electrode is then integrated with a microfluidic device and used in a standard electrochemical cell. When antibodies are introduced on the electrode surface, they selectively bind with the antigens, changing the impedance of the electrical circuit which is detected via impedance spectroscopy. Antibodies to SARS-CoV-2 spike S1 protein and its receptor-binding-domain (RBD) are detected at a limit-of-detection of 2.8 × 10-15 and 16.9 × 10-15 m, respectively, and read by a smartphone-based user interface. The sensor can be regenerated within a minute by introducing a low-pH chemistry that elutes the antibodies from the antigens, allowing successive sensing of test samples using the same sensor. Sensing of S1 and RBD antibodies is specific, which cross-reacts neither with other antibodies such as RBD, S1, and nucleocapsid antibody nor with proteins such as interleukin-6. The proposed sensing platform could also be useful to detect biomarkers for other infectious agents such as Ebola, HIV, and Zika.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Electrodes , Graphite/chemistry , Nanotechnology/methods , Aerosols , Antigens, Viral/immunology , Biosensing Techniques , Dielectric Spectroscopy , Electrochemical Techniques , Humans , Hydrogen-Ion Concentration , Nanostructures , Printing, Three-Dimensional , Protein Domains , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL